Can Google Route?

Building a High-Speed Switch from Commodity Hardware

Guido Appenzeller, Matthew Holliman
Q2/2002
Outline

- Motivation: Cost of switches
- The Basic Unit
- Switching Fabrics
- Analysis & Reality Check
Price Survey of Gigabit Switches
Apples and Oranges

PC Gigabit Ethernet Card
- $34.99 (32 Bit)
- $49.35 (64 Bit)

Layer 2
- 24 Port Switch $2,200
- 16 Port Switch $1,500
- 8 Port Switch $830
- 4 Port Switch $460

Layer 3
- 24 Port Switch $7,467

Routers (High End)
- CISCO 7600
 - Max 15-80 Gbit
 - Base price $60k
 - Line Cards $10k
 - Total $100k-250k???

- CISCO 12400
 - Max 160 Gbit
 - Base Price $120k
 - Line Cards $25k-$50k
 - Total $300-$1m???
Cost/Gigabit vs. Total Switching Capacity

Cost/Gigabit dramatically increases with aggregate speed.
Let’s build a Switch the Google way
Use large numbers of cheap PC components

- Use cheap PC boards ($250)
 - 16 MBytes of memory
 - No Disk
- Use cheap copper Gigabit Ethernet Cards
- Use Clos Networks to build larger fabrics out of smaller ones
PC Data Flow
The PCI bus is the bottleneck

PC bus layout

CPU
MCH
DRAM
Gig-e
Gig-e

PCI bus

NIC raises interrupt
CPU processing

NIC transfers packet(s)

NIC FIFO
Ethernet frame arrivals

PCI bus arbitration/address
PCI burst write
Terminate transaction

3.2 GB/s
0.5 GB/s

PC bus layout

CPU
MCH
DRAM
Gig-e
Gig-e

3.2 GB/s
0.5 GB/s
Interrupts are a bottleneck for short packets

- Packet processing is done from/to DRAM
- Packets are written from/to network cards in bursts to save IRQ overhead and PCI bandwidth
Per Port Throughput vs. Burst Size

We need 66Mhz, 64-bit system

x 100 Mbits

Per-port read/write bandwidth

Burst Size

1 GBit Threshold

33 MHz, 32-bit
66 MHz, 32-bit
33 MHz, 64-bit
66 MHz, 64-bit
CPU clock cycles per byte vs. Packet Size

For 100% throughput we need to aggregate short packets.
PC Performance Summary

Today’s PCs are just fast enough to operate as a 4x4 switch

- To build a 4x4 half duplex (2x2 full duplex) switch we need:
 - 66 MHz/64 Bit PCI bus
 - 1 Gbyte/s Memory Bandwidth
 - NIC must have sufficient buffers to aggregate short packets to bursts (about 2kBytes)

- Software has to run w/o interrupts
 - e.g. Linux in halted mode
Building larger Switches
Clos Network for an 16x16 Switch made of 4x4 Switches

Requires
- 12 PCs
- 48 Network Cards
- 8 GBit capacity
- Total cost: $5400

3Com is cheaper
Building larger Switches
Clos Network for an 256x256 Switch out of 16x16 switches

Requires
- 576 PCs
- 2304 network cards
- 128 Gbit capacity
- Total cost: $260k

Now we are cheaper!

Well, sort of...
Switch size vs. Basic Units Needed
Scaling is slightly worse than n log(n)

- How many 4x4 switches do we need for an NxN switch?
 - 4 x 4 1 switch
 - 16 x 16 12 switches
 - 256 x 256 576 switches
 - $4^{2^n} \times 4^{2^n} = 3^n4^{2^n}/4$ switches

- General:
 - N x N needs $(N/4) \log_4 N (1.5)^{\log_2 \log_4 N}$ switches

- Could you build a switch with less basic units
 - Maybe, but not much
 - Theoretical limit is $O((N/4) \log_4 N)$
 - Differing term $(1.5)^{\log_2 \log_4 N}$ is small
Scheduling – The Problem

How do we do scheduling?

- For n=k Clos Network we need dynamic matching
 - For 256x256 algorithm is time-consuming
- How to pass traffic information between inputs, scheduler and nodes
 - More network connections are costly
 - Timing critical
Solution: Buffered Clos Networks

Two ideas:

1. Add a randomization stage (Chang et. al.)
 - Now we can use round robin as scheduler
 - This is deterministic and requires no synchronization between nodes

2. Use the PC’s capability to buffer data
 - Each node has a few Mbytes
 - If there is a collision re-send packets

- We use randomization
Randomized, Buffering Clos Network

Stage 1:
- Pseudo Random (no coordination needed)
- Never blocks

Stage 2:
- Round Robin (no coordination needed)
- Never blocks.
Stability Analysis of the Switch

- **First stage Analysis**
 - Matching is random, distribution of packets on middle column of nodes is I.I.D. Uniform
 - No blocking can occur
 - Queue length at the middle stage is equivalent to an IQR with k inputs, VOQs and Round Robin scheduling
 - We know such a IQR has 100% throughput under I.I.D. Uniform traffic

- **Second stage**
 - No blocking can occur, 100% throughput if all VOQs in middle stage are occupied
 - Queue length at the middle stage is equivalent to an output queued router with k inputs.
 - Output queued router has 100% throughput

System has 100% throughput for any admissible traffic
Reality Check

- This might look like a good idea...
 - Cheap
 - Scalable – switch can grow
 - Some Redundancy - node failure reduces throughput by 1/16 worst case

- ...but is probably not exactly what Carriers want
 - High power consumption (50 kW vs. 2.5 kW)
 - Major space requirements (10-20 racks)
 - Packet reordering can happen (TCP won’t like it)
 - Maintenance – One PC will fail per day!
Research Outlook
Why this could still be interesting

- We can do this in hardware
 - Implement in VLSI
 - Build from chipsets that 24x24 switch manufacturers use.

- We could use better base units
 - E.g. 1.15 TBit half duplex (fastest in the world?)
 - 576x576 using 24x24 Netgear switches (GS524T)
 - Cost: $158k
 - (We might get a volume discount from Netgear)

- So far we don’t use intelligence of the nodes
 - We can re-configure matchings periodically
 - Distribute lookup
Backup
Randomized/HoQ Buffering Clos Network

Stage 1:
- Pseudo Random (no coordination needed)
- Never blocks

Stage 2:
- Head of Queue (no coordination needed)
- If it blocks, buffer packet and resend.

Note: We can overprovision middle layer!